AIOPS

Concepts

  • XDR(Extended Detection and Response):综合网络、终端、云等层面

    • EDR(Endpoint Detection and Response):主要关注终端层面的威胁和响应
    • NDR(Network Detection and Response):主要关注网络层面的威胁和响应
  • SIEM(Security Information and Event Management)

    • Splunk
    • Elastic SIEM
    • Log Rhythm
  • DXL(Data Exchange Layer):用于安全产品之间通信的协议

  • SOC(Security Operations Center)

  • IDS(Intrusion Detection System)

    • HIDS (Host-Based Intrusion Detection System)
      • FIM (File Integrity Monitoring)
    • NIDS (Network-Based IDS)
    • Signature-based IDS (Knowledge-based IDS)
    • Anomaly-based IDS
  • NTA(Network Traffic Analysis)

  • DLP(Data Loss Prevention)

    • EDLP(Endpoint-based DLP)
    • NDLP(Network-based DLP)
  • NAC(Network Access Control):网络准入控制,确保只有符合条件的设备才能访问

Projects

Anomaly Detection

Log-based

Log Parser

Projects

Researchers

References

Mechine Learning

Libraries

Time series

Libraries

DLP

Document Classification

Articles

Datasets

Models

NLI(Natural Language Inference)

Text Similarity

LLM Deploy

Tencent Logs Data

  1. 将容器内日志上报到 CLS:
  1. 配置 CLS 转发到 CKafka

Applications

UEBA

Solution

  1. feature engineering -> machine learning anomaly detection -> llm detection and explanations
  2. llm labelling -> supervised anomaly detection -> llm explanations
  3. llm labelling -> select anomaly detection model and parameters -> detection -> llm(weaker?) explanations
  4. llm fine tuning
  5. general rule-based model alternative
  6. llm classification

Backends

  • Venus: ChatGLM, LLaMA
  • Qpilot: ChatGPT
  • Hunyuan: hunyuan-13B, hunyuan-176B

Evaluation

  • llm model comparison

  • llm v.s. rule-based

  • params tuning

    • temperature
    • top_p
  • use prompt to control risk level

  • llm write rules

Difficulties

  • deployment

  • tokens limitation

  • model incompetence

    • unexpected answer
    • wrong answer
    • inconsistent answer
    • good answer with bad explanation
  • costs/rate limit

  • data shiftiness/evolution

  • hyperparameter of llm (context length, time range)

Costs

  • average prompt tokens:
  • private deployment

TODO

  • rule based labeling
  • model selection
  • gpt4 lableing
  • data anonymization
  • mock abnormal event
    • compromised accounts
    • insider threats
    • account sharing
    • bot
    • account lockout
    • dormant accounts
    • data breaches
  • Data generalization
  • CoT prompts

References